pten
  • 6
  • 3
  • 12
  • 15
  • 11
  • 9
  • 2
  • 4
  • 14
  • 7
  • 20
  • 5
  • 10
  • 14
  • 11
  • 13
  • 1
  • 8
  • 12
  • 13

Em Rede  Ligações  Grupos de trabalho     

emRede - folha informativa

Redes Rurais EU 

Rede ENRD

 

EIP-AGRI

   

 

 WhatHorizon2020

 

 

Portugal 2020

PDR 2020

Prorural

Proderam2020

 gpp

IFAP

Categoria: Alterações Climáticas – RIAAC-AGRI
Arquivos:

Climate change projections point to increasing air temperature and reduced precipitation in southern Portugal, which would affect farming systems. This study aims to assess the impacts of climate change on irrigated agriculture in southern Portugal. These impacts were assessed by combining climate model data with a soil water balance model and a numerical model for the design of irrigation systems. Meteorological data from two weather stations were used along with three climate models (HadRM3P, HIRHAMh and HIRHAMhh; 2071–2100).

The crop rotations studied included sugar beet–maize–tomato– wheat and sunflower–wheat–barley. Two adaptation measures were considered: (i) maintaining the current crop varieties; (ii) using new crop varieties. The results from the considered climate change scenarios indicated that the impacts of climate change on irrigation requirements depend on the adopted adaptation measures. On average, the seasonal irrigation requirements increased by 13–70% when new crop varieties were used and by -13 to 7% when the current crop varieties were maintained. The impacts of climate change on irrigation system design were considerable, with the design flow rate increasing by 5–24%.

Autor Este endereço de email está protegido contra piratas. Necessita ativar o JavaScript para o visualizar.
Ano
:
2017
Editor
:
Irrigation and Drainage 66: 3-18; DOI 101002/ird1996
Transferir 80

Global demand for livestock products is expected to double by 2050, mainly due to improvement in the worldwide standard of living. Meanwhile, climate change is a threat to livestock production because of the impact on quality of feed crop and forage, water availability, animal and milk production, livestock diseases, animal reproduction, and biodiversity. This study reviews the global impacts of climate change on livestock production, the contribution of livestock production to climate change, and specific climate change adaptation and mitigation strategies in the livestock sector.

Livestock production will be limited by climate variability as animal water consumption is expected to increase by a factor of three, demand for agricultural lands increase due to need for 70% growth in production, and food security concern since about one-third of the global cereal harvest is used for livestock feed. Meanwhile, the livestock sector contributes 14.5% of global greenhouse gas (GHG) emissions, driving further climate change. Consequently, the livestock sector will be a key player in the mitigation of GHG emissions and improving global food security. Therefore, in the transition to sustainable livestock production, there is a need for: a) assessments related to the use of adaptation and mitigation measures tailored to the location and livestock production system in use, and b) policies that support and facilitate the implementation of climate change adaptation and mitigation measures.

Autor Este endereço de email está protegido contra piratas. Necessita ativar o JavaScript para o visualizar.
Ano
:
2017
Editor
:
Climate Risk Management 16:145-163; DOI 10.1016/J.CRM.2017.02.001
Transferir 150

Irrigated agriculture is crucial for food security and rural development in the Mediterranean region, but it will be significantly affected by climate change. Evaluating the present and future agroclimatic conditions and predicting the impacts on irrigation requirements for the dominant crops in the region may help to develop more appropriate adaptation strategies. This paper describes the expected changes in climate and assesses the irrigation requirement for key crops grown across the region, using a case study in a typical river basin in Spain. Milder but wetter winters and more extreme hot, dry summers are anticipated. Evapotranspiration, crop water requirements and irrigation needs for major crops are expected to increase by as much as 30% by the 2080s.

Autor Este endereço de email está protegido contra piratas. Necessita ativar o JavaScript para o visualizar.
Ano
:
2010
Editor
:
Outlook on Agriculture 39: 296-275; DOI 10.5367/oa.2010.0018
Transferir 75

According to the Food and Agriculture Organization of the United Nations (FAO), there are around 300 million working animals worldwide. They play a fundamental role in human livelihoods through their contribution to financial, human and social capital, supporting between 300 and 600 million people globally, particularly in poorer areas, where animal energy represents a huge and extremely important sustainable power resource. Yet their recognition remains largely neglected, with animal traction being largely ignored by decision and policy makers and even by civil society at all levels, which compromises a real develo pment and improvement of this technology as well as animal welfare.

On the other hand, a collective ecological and economical consciousness and an increasing awareness of public opinion about the need to reduce the excessive industrialization and mechanization of agriculture and forestry has led some sectors of society to consider the (re)use of animal traction as a valid modern source of energy. Indeed, working animals optimally transform the consumed biomass in energy and natural fertilizer, which avoids soil degradation and contributes to a sustainable management of arable lands, forests and sensitive areas. The need to maintain biodiversity, reduce carbon emissions, encourage self-reliance and reduce consumption of resources also contributes to this trend.

Autor Este endereço de email está protegido contra piratas. Necessita ativar o JavaScript para o visualizar.
Ano
:
2017
Editor
:
Open Agriculture 2: 300-307; DOI 10.1515/opag-2017-0034
Transferir 86

This study aims at assessing the feasibility of deficit irrigation of maize, wheat and sunflower through an analysis of the economic water productivity (EWP). It focuses on selected sprinkler-irrigated fields in Vigia Irrigation District, Southern Portugal. Various scenarios of water deficits and water availability were considered. Simulations were performed for average, high and very high climatic demand.

The potential crop yields were estimated from regional climatic data and local information. Using field collected data on yield values, production costs, water costs, commodity prices and irrigation performance, indicators on EWP were calculated. Results show that a main bottleneck for adopting deficit irrigation is the presently low performance of the irrigation systems used in the considered fields, which leads to high water use and low EWP. Decreasing water use through deficit irrigation also decreases the EWP. Limited water deficits for maize are likely to be viable when the irrigation performance is improved if water prices do not increase much, and the commodity price does not return to former low levels.

The sunflower crop, despite lower sensitivity to water deficits than maize, does not appear to be a viable solution to replace maize when water restrictions are high; however it becomes an attractive crop if recently high commodity prices are maintained. With improved irrigation performance, wheat deficit irrigation is viable including when full water costs are applied, if former low prices are not returned to. However, under drought conditions full water costs are excessive. Thus, adopting deficit irrigation requires not only an appropriate irrigation scheduling but higher irrigation performance, and that the application of a water prices policy would be flexible, thus favouring the improvement of the irrigation systems.

Autor Este endereço de email está protegido contra piratas. Necessita ativar o JavaScript para o visualizar.
Ano
:
2009
Editor
:
Biosystems Engineering 103: 536-551; DOI 10.1016/j.biosystemseng.2009.05.002
Transferir 81

Mediterranean regions are characterized by a large intra-annual and inter-annual variability in rainfall and associated hydrological regime patterns. Predictions of changes in climate indicate that mean precipitation and annual temperature will both increase, with a concentration of precipitation and the existence of extended and harsher drought periods with profound implications for river ecosystems. Our aim in this study was to predict the response of Mediterranean riparian vegetation to different climate change scenarios, using a dynamic riparian vegetation model that relates flow regime with riparian vegetation dynamics.

In our case study, mapped riparian patches were significantly distinct in between, and altitude, height above water table, patch age and stem diameter were the most important of the factors that distinguished succession phases. A floodplain vegetation model was calibrated and achieved a good strength of agreement between simulated and observed maps. Model results with the expected flow regime under the effect of climate change demonstrate that nonwoody sparsely vegetated areas expand outwards and mature succession patches expand inwards, whereas pioneer and young riparian patches decrease in area. Our results suggest that extreme climatic change in Mediterranean rivers will promote the disappearance of the pioneer and young succession stages of riparian woodlands, thus making efforts to conserve these ecosystems a challenging task.

Autor Este endereço de email está protegido contra piratas. Necessita ativar o JavaScript para o visualizar.
Ano
:
2013
Editor
:
Ecohydrology 6: 413-424; DOI 10.1002/eco.1287
Transferir 85

Climate change adds an additional layer of complexity that needs to be considered in business strategy. For firms in the food industry, many of the important climate impacts are not directly related to food processing so a value chain approach to adaptation is recommended. However, there is a general lack of operational tools to support this. In this study, carbon and water footprints were conducted at a low-precision screening level in three case studies in Australia: Smith’s potato chips, OneHarvest Calypso™ mango and selected Treasury Wine Estates products.

The approach was cost-effective when compared to high-definition studies intended to support environmental labels and declarations, yet provided useful identification of physical, financial, regulatory and reputational hotspots related to climate change. A combination of diagnostic footprinting, downscaled climate projection and semi-quantitative value chain analysis is proposed as a practical and relevant toolkit to inform climate adaptation strategies.

Autor Este endereço de email está protegido contra piratas. Necessita ativar o JavaScript para o visualizar.
Ano
:
2016
Editor
:
Climate 4: 26; DOI 10.3390/cli4020026
Transferir 93

An overview is presented of the determined degree of global land degradation (principally occurring through soil erosion), with some consideration of its possible impact on global food security. Most determinations of the extent of land degradation (e.g. GLASOD) have been made on the basis of “expert judgement” and perceptions, as opposed to direct measurements of this multifactorial phenomenon. More recently, remote sensing measurements have been made which indicate that while some regions of the Earth are “browning” others are “greening”. The latter effect is thought to be due to fertilisation of the growth of biomass by increasing levels of atmospheric CO2, and indeed the total amount of global biomass was observed to increase by 3.8% during the years 1981 – 2003. Nonetheless, 24% of the Earth's surface had occasioned some degree of degradation in the same time period. It appears that while long-term trends in NDVI (normalised difference vegetation index) derivatives are only broad indicators of land degradation, taken as a proxy, the NDVI/NPP (net primary productivity) trend is able to yield a benchmark that is globally consistent and to illuminate regions in which biologically significant changes are occurring. Thus, attention may be directed to where investigation and action at the ground level is required, i.e. to potential “hot spots” of land degradation and/or erosion.

The severity of land degradation through soil erosion, and an according catastrophic threat to the survival of humanity may in part have been overstated, although the rising human population will impose inexorable demands for what the soil can provide. However, the present system of industrialised agriculture would not be possible without plentiful provisions of cheap crude oil and natural gas to supply fuels, pesticides, herbicides and fertilisers. It is only on the basis of these inputs that it has been possible for the human population to rise above 7 billion. Hence, if the cheap oil and gas supply fails, global agriculture fails too, with obvious consequences.

Accordingly, on grounds of stabilising the climate, preserving the environment, and ensuring the robustness of the global food supply, maintaining and building good soil, in particular improving its SOM content and hence its structure, is highly desirable. Those regions of the world that are significantly degraded are unlikely to support a massive population increase (e.g. Africa, whose population is predicted to grow from its present 1.1 billion to 4.2 billion by 2100), in which case a die-off or mass migration might be expected, if population control is not included explicitly in future plans to achieve food security.

Autor Este endereço de email está protegido contra piratas. Necessita ativar o JavaScript para o visualizar.
Ano
:
2014
Editor
:
Science Progress 97: 97-153; DOI 10.3184/003685014X13994567941465
Transferir 69

We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability.

We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability.

Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches.

Autor Este endereço de email está protegido contra piratas. Necessita ativar o JavaScript para o visualizar.
Ano
:
2013
Editor
:
Global Change Biology 19: 75-89; DOI 10.1111/gcb.12023
Transferir 78

Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility.

The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe.

Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

Autor Este endereço de email está protegido contra piratas. Necessita ativar o JavaScript para o visualizar.
Ano
:
2017
Editor
:
Environmental Research Letters 12: 034027; DOI 10.1088/1748-9326/aa5ef1
Transferir 92